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Abstract—This paper is concerned with the problem of free vibrations of homogeneous isotropic
non-circular cylindrical shells, including the effects of thickness shear deformation and rotatory
inertia. For this problem the equations of motion of two first approximation shell theories are
derived. Both theories are transverse shear deformable analogues of the classical Love-type theory.
The first theory involves thickness shear correction factors while the second one assumes a parabolic
variation for thickness shear strains and stresses, with zero values at the inner and outer shell
surfaces. The equations of both theories are solved, for the case of a simply supported non-circular
cylindrical shell and, as an application, the free vibration problem of a simply supported oval
cylindrical shell is considered. From comparisons made between corresponding numerical results
based on both theories, as well as the classical Love-type theory, a superiority of the theory assuming
parabolic variation of thickness shear is concluded.

1. INTRODUCTION

The free vibration problem of non-circular cylindrical shells has been studied by several
investigators[1-10]. In all these articles, classical thin shell theories based on the Kirchhoff-
Love assumptions have been used. Donnell-type quasi-shallow shell theory[11] has been
used by Culberson and Boyd[2], Soldatos and Tzivanidis[5] and Soldatos[8]; Love-type first
approximation theory[12] has been used by Culberson and Boyd[2] and Shirakawa and
Morita[6]; Sanders-type best first approximation theory has been used by Sewall and
Pusey([1], Elsbernd and Leissa[3] and Chen and Kempner{4] ; the Goldenveizer—Novozhilov
approximations{13, 14] have been employed by Yamada et al[10]; finally, Flugge-type
second approximation shell theory[15] has been used by Koumousis and Armenakas[7] and
Soldatos[9].

The inclusion of thickness shear deformation effects into a theory suitable for the
vibration analysis of non-circular cylindrical shells is essential. Especially, it is more essential
in cases of laminated composite materials[5, 8, 9] in which the ratio of the thickness shear
moduli to their in-plane Young’s moduli can be much smaller than the corresponding ratio
in homogeneous isotropic materials.

In order to include thickness shear deformation effects into the corresponding problem
of homogeneous circular cylindrical shells, Herrmann and Mirsky[16, 17] derived second
approximation equations and Warburton and Soni[18] derived first approximation equa-
tions for the isotropic and orthotropic case, respectively. For laminated composite cases
several sets of equations have been derived ; by Sinha and Rath[19] which used Donnell’s
approximations, by Dong and Tso[20] and Rath and Das[21] which used Love’s approxi-
mations, and by Hsu e al.[22] which used Sanders’ approximations (see also Refs [23, 24]).

The derivation of all sets of equations presented in Refs [16-22] was guided by the
work of Mindlin[25] in the theory of homogeneous isotropic plates and, therefore, led to
the introduction of shear correction factors in the transverse shear resultant—strain relation.
In Ref. [25] the value of these correction factors had been selected as n?/12. In the case of
cylindrical shells (either homogeneous or laminated composites) these factors account not
only for the variations of shear angles and complex stress state but also for the types of
materials, the manner in which they are assembled as well as the geometric characteristics
of the particular shell element. Hence, a procedure of determining these factors never gives
absolutely acceptable results while it is always cumbersome. In order to avoid this difficuity
Bhimaraddi[26], using second-order approximations, and Reddy and Liuf27], using first-
order approximations, have recently derived the equations of some theories which take into
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consideration thickness shear deformation effects while do not involve the determination
of any unknown shear correction factors. This is achieved on expanding the shell middle
surface displacement components, in power series of the transverse coordinate, in a manner
which permits a realistic parabolic variation for thickness shear strains and stresses, with
zero values at the extreme fibres. )

This paper can be considered as one of the primary attempts in the field of shell theories
which, taking into account thickness shear deformation effects, are suitable for the free
vibration analysis of non-circular cylindrical shells. As such, it is concerned with the
homogeneous isotropic case only. Two first approximation shell theories are proposed and
their equations of motion are derived. Both theories are transverse shear deformable
analogues of the classical Love-type theory. The first theory involves thickness shear
correction factors; in the special case of a circular cylinder, its equations reduce to the
homogeneous isotropic version of Warburton and Soni’s[18] and Dong and Tso's{20]
equations. The second theory is motivated by the assumptions made in Refs [26, 27]. It
assumes a parabolic variation of thickness shear and, therefore, does not involve any shear
correction factors which, in the non-circular cylindrical case, must also account for a non-
zero eccentricity parameter characterizing the cylindrical cross-section.

As an application, the equations of motion of both theories are solved for simply
supported non-circular shells. The solution, based on the application of Galerkin’s method,
is obtained in a generalized algebraic eigenvalue form and is independent of the profile of
the cylindrical cross-section. As a special case of the obtained solution, the free vibration
problem of simply supported oval shells is considered. For this problem, numerical results
based on both theories, as well as the Love-type classical theory{2], are obtained, compared
and discussed.

2. THEORETICAL FORMULATION

The nomenclature of the middle surface of a moderately thick non-circular cylindrical
shell is shown in Fig. 1. According to the general procedure outlined in Refs [5, 9], a
function, f(s), of the circumferential coordinate is considered to describe the divergence of
the non-circular shell configuration from that of a corresponding circular shell. Denoting
by R, the constant radius of the circular shell, the curvature of the non-circular shell is
given as

(1/R) = (1/R9) f(5) (M

where R is its variable radius of curvature.
The shell is composed by a homogeneous isotropic linearly elastic material whose state
of stress is governed by Hooke’s law

—L(s +ve o, = E (e, +vey)
ax'_l_vz x s/ :"l_vz s x/»

@

(Tx:s Txz> tn) = 5(1_'1"—") (sx.” Exzy ssz)

Fig. |. Nomenclature of a non-circular cylindrical shell.
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where E and v denote Young’s modulus and Poisson’s ratio, respectively. Disregarding in
eqns (2) the contribution of transverse shear strains (¢,, = ¢, = 0), the two-dimensional
Hooke’s law which governs the plane stress state in a homogeneous isotropic linearly elastic
material is obtained.

2.1. A theory employing thickness shear correction factors
In order to take into consideration the effect of transverse shear deformation, consider
the following displacement field

Ulx,s,z;t) = u(x,s; )+ 2y (x,5; 1),
V(x,s,z;0) = v(x,s; )+ 2y (x,5;1), 3
W(x,s,z;t) = w(x,s; 1)

where ¢ denotes time. According to Timoshenko’s beam[28, 29] and Mindlin’s plate{25]
theories, u, v and w are the shell middle surface displacement components, while ¢, and ¢,
represent the angular rotation, about the s and x directions, respectively, of straight lines
normal to the middle surface before deformation. These lines remain straight but, due to
the transverse shear consideration, they do not remain normal to the middle surface after
deformation.

Using the displacement field, eqns (3), and for Love’s first approximation shell theory
used here[12, 30}, the strains appearing in eqns (2) can be decomposed into extensional and
flexural components according to

&= ex+2kx’ & = e,+zk,, &y = exs+2km Ex; = €xp €z = €y (4)
where

€x = Uy, €, = U,J+W/R! €y =V t+u, €xy = lﬁx"'w,m

” )
€, = ‘I’s""w.:_ —ﬁ’ kx = wx,x’ k: = ll’.v,.n kx.r = ',’s,x+|/’x,.r~

For thin shells obeying Kirchhoff-Love assumptions, the requirement of negligible shear

strains (e,, = e,, = 0) gives

v
V.= —Wx '/’: =-—-w,+ 'R (6)

and the ensuing consequence of eqns (5) result in forms appropriate to the classical Love-
type theory[2, 6, 31].
The force and moment resultants are, respectively, defined as

h/2

(NX’ NJ’ Nx:’ QX’ QS) = J‘

(04,05, Tugs Tazs Tez) dz,
2

hf2

(st M.r, M) = J.

(05 0,,7x)2dz
~hj2
where £ is the shell constant thickness. After introduction of egns (2) into egns (7) and
carrying out the denoted integrations, the following constitutive equations are obtained

1—
Nx = C(ex + ve,), N: = C(e: + vex)’ (Nx.n Qxa Qs) = CTV (ex:a ksexz, k4e:z)s

®
M= Dlktvk), M, =D(kvk), Mo =D">"k,
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where k, and k; are thickness shear correction constants and the extensional and bending
rigidities of the shell are given according to

C=Eh(1—v)), D= Er/12(1—v?). 9)

For the thickness shear deformable analogue of Love’s first approximation shell theory,
the equations of motion, governing the free vibration problem of cylindrical shelis are given
in Ref. [20]. In the present notation, they can be expressed as

Nex+Nys = potn
Nzt Nos+ QR = pov s
Quxt+Qos— NJR = poW, (10)
M +My— Q= pWsn
M+ M, — Q= pisu

where

hi2

~hf2

and p is the constant mass density of the shell material.
After eqns (5) and (8), eqns (10) can be expressed in the following differential eigenvalue
form

(£} =0 (12)
where

{5}T = {uo v, w, Ro%, RO‘I’:} (13)

and [.#] is a 5 x 5 matrix of linear partial differential operators; a non-dimensional version
of its components is given in Appendix A, in terms of the following parameters

n=x/L, ¢=s2nR, O<n,{<1), A=RJL, v,=(1-v)2,

_ 14
va=(14v)2, D=AhY12R},  p=p(1-v)RYE. 9

The constants k, and ks, appearing in eqns (8), are the analogues of the well-known
thickness shear correction factors introduced by Mindlin[25] for the analysis of homo-
geneous isotropic plates; their value had been estimated as #%/12. This value has also been
found suitable for the analysis of homogeneous circular cylindrical shells{17, 18, 32, 33]. The
same value (%/12) had further been used, for conveniency, in some analyses of laminated
composite circular cylindrical shells{34, 35] where higher order shell theories had been
employed, regardless that, in those analyses, the correction factors must account not only
for the variations of shear angles and complex stress state but also for the types of materials
and the manner in which they are assembled.

In the present study, the correction factors appearing in eqns (8) must also account
for the eccentricity characterizing the shape of the cylindrical cross-section. Hence, a
procedure for determining these factors seems to be very cumbersome while is, in general,
dependent on the particular shape of the cross-section of the shell considered.

In the example of the oval cylindrical shell considered in Section 4, in order to avoid
the difficulty of the determination of the shear correction factors, an attempt was made to
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use their Mindlin’s value (k, = ks = n%/12). However, some of the obtained numerical
results showed that this choice of their value is insufficient for a detailed study of the free
vibration problem of moderately thick non-circular cylindrical shells. This makes apparent
the necessity of the shell theory presented in the next section, which employs parabolic
variation of thickness shear and, therefore, does not involve any thickness shear correction
factors.

2.2. A theory employing parabolic variation for thickness shear
Instead of the displacement field, eqns (3), the following displacement expansion is
now employed

Ux,s,2;0) = u(x,s; t) —z[w +{u(x, 55 1)),
V(x,s,2;8) = (1+2/R)(x,s; ) — z{w ,+{v4(x, 53 2)], as)
Wi(x,s,z;t) = w(x,s;1)

where { = (4z%/3h—1). Again u, v and w represent the shell middle surface displacement
components. The terms zw, and z(w,—v/R) are the standard terms which guarantee the
validity of the Kirchhoff-Love assumptions in the classical Love-type thin shell theory. The
remaining terms, including those involving the unknown functions u, and v,, have been
employed to disturb the assumption that normals to the undeformed middle surface still
remain normal to it after deformation ; they also remove the assumption, introduced by the
displacement fields, eqns (3), that these normals remain straight after deformation. Instead,
as it can be seen from eqns (17) below, they lead to a realistic parabolic variation for
thickness shear strains and stresses, with zero values at both the inner and outer shell
surfaces.

The displacement field, eqns (15), is introduced into the linear version of the strain—
displacement relations of the three-dimensional elasticity{30, 36]

&= U.xa & = (1 +Z/R)_1(V_'+ W/R)a & = W,za
&s=V.+(+2/R)"'U,, &n=W,+U, (16)
&: = (1+2/R)-"(W,—V/R)+ V..

Restricting next our approximations in the limits of a first-order theory (A/R « 1), the
strains appearing in eqns (2) can be expressed, in a power series of the transverse coordinate
z.as

423 423 423
& = e,+zk,— me, xs = €yt 2k — me:’ & = e,+zk,— —5m,

347 -
4z? 4z2
Ex; = 1_7{2— €xzs € = I_F €5

where

€x = Uy, €; = U.J+W/R9 Exs = v,x+u,sa €x, = Uy, e, = Uy,
k.= Upx—Wix k= vl,,—w',,+(v/R)_,, kx: = vl,x+ul,:—2w,x:+v.x/R9 (18)

my = Uy, m, =0y, my, = vl,x+ul.r
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As it now becomes apparent the unknown functions #;, and v, represent the thickness
shear strains action on the shell middle surface. For thin shells obeying Kirchhoff-Love
assuraptions, the requirement of negligible shear strains (e,, = e,, = 0) leads tou, = v, =0
and the ensuing consequence of eqns (18) result in forms appropriate to the classical Love-
type theory[2, 6, 31].

Force and moment resultants are defined as

/2
(Nxa NJ’ Nx.v = J‘ (GX’ a!’ Tx.v) dz!
~h/2

hi2

(Qx: Q:) = J‘ (txz, 1:sz)(l ~-4z 2/ h 2) dZ,
—hf2
2 (19)

(Mx’ Maa st) = j (ax’ G tx:)z dZ,
2

hj2

4
(Sxa Sn Sx.r) =352 (ax: G Tx:)ZB dz.
3h% J w2

Introduction of eqns (2) into eqns (19) leads to the following constitutive equations
N, = Cle,+ve,), N, = C(e;+ve,),
1—v 8 8
(Nx.u Qx’ Q:) - CT (ex.n ‘1—5 €xz5 TS' esz)’
M, = Dlk.+vk,—(m.+vm,)/5],
Sx = D{(k;+vk))/5—(m,+vm,)[21], (20)
M, = D[k: + ka - (ms+ me)/S],
S, = D[(k + ka)/s - (ms + vm,,)/21],

= D (kxs —m,/5),
l—v
Sx: = D—z_(kx:/s_mxs/ZI)

The equations of motion are derived by employing Hamilton’s principle and using the
standard procedure of the calculus of variations. Accordingly, the following differential
equations, governing the free vibration problem, are obtained

Nx.x + Nx.u = Po“,m

4p,

N.m + Nx:,x + (M.f,: + Mx:,x)/R = P Ov.u + & UAY 'jm v 1.t

2 01—, +0/R)u—

4
- s/R+Mx‘xx+MJ,ss+2st.x.\‘ = PoW.u—Pz[W,xx+W,:s—4(“1.x+vl,:)/5].u— ?%(“l,x"‘uu),m
4 17 4p, 16
(MX_S.\'),X+(MX.!_SX.\')K Qx = p2 2] — Wi + 3h2 (W x zul).n + Wp(;ul.ln

4 (17 4 16
(M.x‘—S.x')«\'+(M.\‘.\‘—-SX:),X—Qs = 5P2< ) + —Z; (W U/R'_zvl).lt+ Wpd)]'”

21”
@n
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associated by the following boundary conditions, which must be satisfied on the shell
boundariesn =0, 1 :

u prescribed or N, = 0,

v prescribed or N,,+ M, ,/R = 0,

w prescribed or M, . +2M, =0,

w, prescribed or M, =0,

u, prescribed or M,— S, = 0,

v, prescribed or M,,—S,, = 0. (22)

After eqns (18) and (20), eqns (21) can also be expressed in the differential eigenvalue
form (12), where now it is

{6}T = {u,v,w, Rou,, R\ }. (23)

A non-dimensional version of the components of the linear differential operator matrix [.#]
is given in Appendix A, in terms of the parameters defined in eqns (14).

3. SOLUTION FOR SIMPLY SUPPORTED SHELLS

The case of a shell subjected to the following set of edge boundary conditions, at 7 = 0,
1, is considered :

N=M,=v=w=y,=0 @9
for the equations of the theory proposed in Section 2.1, or
N,=M,=8S,=v=w=0v,=0 (25)
for the equations of the theory proposed in Section 2.2.
Both of the aforementioned sets of boundary conditions are equivalent to the set of

S2 simply supported edge boundary conditions considered in Refs [5, 9] and elsewhere.
They are exactly satisfied on assuming the following displacement model

N {sin (2nné) }

u = cos (wt)cos (mnn) Y. a,

2, “\acos @nmf)
v = cos (f) sin (mmn) é?} b, {:‘1;0(52 ii'gé)}
w = cos (@f)sin (mmn_i;} . {f’;jj’(’;ﬁ 5)}’ 26)
Rl ) = c08 (@) 008 () ﬁ%}(d py{E@d L
R 0) = cos(@n)sin(mmn) 3. (e Ey) {Z;‘gf;"g@}

n={

Here, w represents a certain unknown natural frequency, m and 2n are the axial and
circumferential half-wave numbers, respectively, a,, b,, ¢,, d,, D,, €, and E, are unknown
constant coefficients and «a is equal to 1/2 if » = 0 and is equal to 1 if » > 0. The Fourier-
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series expansions (26) have similar properties with those of the displacement models used
in Refs [5, 9], for a corresponding classical shell theory problem; the upper and lower
functions appearing in the braces represent antisymmetric and symmetric displacements,
respectively, in the shell circumferential direction.

Introduction of the displacement model, eqns (26), into the differential equations (12)
and application, in £ direction, of the method of Galerkin (withi=0,1,2,..., N),

~

1 o
200+ La0+ Lo+ Rl )+ Rt ol o OO

cos (2inf) 0,

I

0,

i

ﬂl 7
N [Z21(@) + L22(0)+ L2s(W) + RoL24(Yr 1)+ RoZ25(¥, 01)] {::((22;:55))} d

»

. o
L+ Lo+ Lo+ BBl i) R0l o g <0, )

o

L@+ Zal0+ Lo+ R i)+ ReZ o0 o g <,

LY

1 {cos Qiné)

\ [Z51(0) + L52(v) + Ls3(W) + Ro L sa(Wrs, u )+ RoE s5(Y5,v1)] sin(2inf)}d£ =0

leads to a general eigenvalue problem of the form

Ty T Ts T Tis I ¢ 0 6 01]/A
Tu To Tia Tu T 0 Hp, Hy; 0 Hy;j|B
Ty T Ty Ty Tis|_ 2 0 Hy, H; H, Hy| |[C|_ 0} (8)
Ta Te Ta Ta T 0 0 Hg H, 0 D
\ _Tsn T, Tss T Tss_ 1..0 H, H;; 0 Hss'_ E

where &* = pw? is a squared non-dimensional frequency parameter and I and 0 represent
proper unit and zero matrices, respectively. The components of the square matrices T, H;;
and the column matrices A, B, C, D and E are given in Appendix B.

The eigenvalue problem, eqn (28), solved by a standard numerical procedure, gives
SN+2 or SN+3 eigenvalues for antisymmetric of symmetric displacements, respectively.
Each one of these eigenvalues is an approximation for a corresponding squared non-
dimensional frequency of the shell. Thus, the integer N must be chosen so that, for the
obtained numerical results, convergence be ensured to a desired accuracy.

From the obtained 5N+2 or 5N+ 3 frequencies, five are associated with each mode
whose nominal circumferential half-wave number nis 1, 2, . . . or N; two of them are in-
plane vibration frequencies (predominant influence in the axial and circumferential sheil
directions x and s), one of them is a flexural vibration frequency (predominant influence
normal to the shell middle surface direction, z), while the other two are thickness shear
vibration frequencies (shear predominant influence in x-z and s-z planes). Withn = 0 and
antisymmetric displacements (torsional modes) two natural frequencies are associateC ; an
in-plane frequency with predominant influence in the circumferential direction and a thick-
ness shear one with predominant influence in the distortion of the s-z plane. With n =0
and symmetric displacements (breathing modes) three natural frequencies are associated ;
an in-plane, a flexural and a thickness-shear one, with predominant influence in the axial
direction x, the normal to the middle surface direction z and shear deformation in the x-z
plane, respectively.
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4, FREE VIBRATIONS OF SHELLS OF OVAL CROSS-SECTION

In order to test both theories proposed in Section 2, as well as the reliability of
corresponding numerical results obtained on their basis, the aforementioned analysis is
applied in a particular case, in which the simply supported non-circular cylindrical shell
has an oval cross-section. According to the oval curvature representation introduced by
Romano and Kempner[37, 38], the function f(£) takes the form

JS(&) = 1+ecos(4nf) (29)

where ¢ is an eccentricity parameter such that |g| < 1.

Expression (29) represents a doubly symmetric oval configuration. As a result, all
frequencies obtainec from the numerical solution of the eigenvalue probiem (28) can be
classified into four groups, each one of which is associated with one of four types of
uncoupled natural modes of vibration ; this is explained, in detail, in Refs [2, 3, 7, 9] (see
also Appendix B). Each one of these groups of frequencies occur for one of the following
displacement models :

(1) antisymmetric displacements with even circumferential half-wave numbers (n = 0,
2 ('2.)'2;1tisymmetric displacements with odd circumferential half-wave numbers (n = 1,
i (.3:).s)3,rmmctric displacements with even circumferential half-wave numbers (n = 0, 2,
: h ()4)) symmetric displacements with odd circumferential half-wave numbers (n = 1, 3,

Furthermore, the whole frequency spectra obtained for any two opposite values of the
eccentricity parameter {1 ¢) are identical. Accordingly, the range of variation of ¢ is limited
to0<e<g .

4.1. Numerical results and discussion

All numerical results presented throughout this study are for oval shells with Poisson’s
ratio v = (0.25. The indication ‘k, = ks = n2/12° or ‘parabolic shear’ denotes numerical
results obtained on the basis of the theory using thickness shear correction factors or the
theory assuming parabolic variation of thickness shear, respectively. Numerical results
denoted with the indication ‘classical theory’ were obtained on the basis of the first approxi-
mation Love-type equations presented in Ref. [2].

Corresponding non-dimensional flexural and in-plane torsional vibration frequencies,
@, obtained on the basis of all three of the afore-mentioned theories, are cited in Tables 1
and 2, for a shell with L/mR, = 6 and several values of h/R;. A relatively small value of the
eccentricity parameter (¢ = 0.2) has been considered for the results shown in Table 1, while
a large value of it (¢ = 1) has been considered for the results shown in Table 2. The in-plane
torsional vibration frequencies, obtained by using antisymmetric displacements (n = 0) are
enclosed in parentheses.

Comparisons between corresponding numerical results show that the parabolic shear
theory predicts lower frequencies than the classical theory does. This is in accordance with
the generally known observation that, due to the neglect of thickness shear effects, classical
plate and shell theories overpredict natural frequencies of vibration. However, the observed
discrepancies, between classical and parabolic shear theories, do not exceed the engineering
admissible error (5%) even for A/ R, = 0.05 (this value of thickness to radius ratio is usually
considered as an upper limit for the validity of classical shell theories concerned with
homogeneous isotropic shells[14]).

On the other hand, and independently of the value of 4/R,, remarkable discrepancies
between corresponding results based on the classical theory and the theory using shear
correction factors occur for antisymmetric displacements only, with n = 2 and 0 (in-plane
torsional frequency). For instance, for ¢ = 0.2 and » = 2 this discrepancy is about 8, 5 and
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Table 1. Non-dimensional flexural and in-plane torsional vibration frequencies & (v = 0.25,
LimRy =6,¢=0.2)

Antisymmetric displacements Symmetric displacements
wr, o et ke e ey R T e
0.025 © (0.3207) (0.3258) (0.3207) 0.5016 0.5Q16 0.5016
1 0.1384 0.1364 0,1363 0.1496 0.1496 0.1496
2 0.0580 0.0641 0.0589 0.1060 0.1060 0.1059
3 0.0623 0.0622 0.0622 0,062u 0.0623 0.0623
4 0.1078 0.1077 0.1076 0.1083 0.1082 0.1081
5 0.1718 0.1713 0.1713 0.1718 0.1713 0.1713
6 0.2509 0.2498 0.2499 0.2508 0.2u89 0.2499
0.050 0 (0.3207) (0.3254) {0.3207) ©0.5016 0.5016 0.5016
1 0.1366 0,1366 0.1368 0.1497 0.1487 0.1496
2 0.0692 0.0735 0.0691 0.1124 0.1123 0.1123
3 0.1154 0.1150 0.1148 0.1158 0.1153 0.1153
4 0.2138 0.2123 0.2122 0.2138 0.2124  0,2123
5 0.3430 0.3393 0.3382 0.3430 0.3393 0.3392
& 0.5015 0.4939 0.4936 0.5015 0.493% 0.4936
0.075 0 (0.3208) (0.3254%) (0.3208) 0.5016 0.50186 0.5016
1 0.1362 0.1362 0.1362 0.1496 0.1496 0.1485
2 0.0834 0.0869 0,0832 0.1217 0.1215 0.1214
3 0.1710 0.1696 0.1695 0.1711 0.1696 0.1695
4 0.3200 0.3152 0.3148 0.3200 0.3152 0.3148
5 0.5141 0.5021 0.5013 0.5161 0.5021 0.5013
6 0.7518 0.7269 0.7252 0.7518 0.726% 0.7253

5% for h/R, = 0.025, 0.05 and 0.075, respectively. Apparently, these discrepancies are
tremendously magnified for ¢ = 1. Their existence is, therefore, attributed to the value
employed for the shear correction factors (k, = ks = =?/12) which seems insufficient to
account for the non-zero value of the oval eccentricity parameter. The resuits drawn in Figs
2 and 3 support such an explanation.

In Fig. 2, the variation of both frequency parameters {(# = 0 and 2) is shown, vs the
variation of h/R,, for a shell with a moderate eccentricity value (¢ = 0.5). Apparently, all
numerical results obtained on the basis of the classical theory and the theory assuming
parabolic variation of thickness shear exhibit an acceptable behaviour. Both theories give
practically identical in-plane torsional and n = 2 flexural frequencies,

On the contrary, corresponding numerical results obtained on the basis of the classical
theory and the theory using shear correction factors fail to be in agreement even in cases
of very thin shells. This can be explained as follows. In the case of a circular shell (¢ = 0),
the two torsional frequencies (the in-plane and the thickness-shear one) are related to each
other through k, = #%/12 (see, for instance, Ref. [17]). This value of k,, adopted here for
the case of an oval shell, has initially disturbed both torsional frequencies ; non-circularity
has, consequently, transferred this disturbance to the n = 2 flexural frequency which, as
being an order of magnitude less than the in-plane torsional frequency, has been much
more affected.

This becomes clear from the results obtained for a thin shell (h/R, = 0.01) as shown
in Fig. 3. Both, the classical theory and the theory assuming parabolic shear variation
always give tdentical results. On the contrary, unless the value of ¢ is very small (slightly
non-circular shells), the theory using correction factors gives inaccurate frequencies ; their
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Fig. 2. Variation of the in-plane torsional (» = 0) and flexural (n = 2) frequency parameter ¢ vs

SAS 22:6-E

Table 2. Non-dimensional flexural and in-plane torsional vibration frequencies @ (v = 0.25,

LimRy =6, ¢ =1.0)

Antisymmetric displacements Symmetric displacements
Classical 2 Parabolic Classical 2 Parabolic
h/R n k sk = == k sk =
[ Theory s 5 12 shear Theory w s 12 shear
0.025 0 (0.3208) (0.4242) (0.3208) 0.5067 0.5067 0.5067
1 0.1178 0.1178 0.1177 0.1698 0.1696 0.1696
2 0.0596 0.1506 0.0595 0.4715 0.4715 0.4714
3 0.0439 0.0u438 0.0438 0.0588 0.0588 0.0587
4 0.1042 0.0959 0.1040 0.1037 0.1035 0.1035
5 0.1670 0.1666 0.1665 0.1641 0.1639 0.1638
6 0.2456 0.2448 0.2u446 0.2u455 0.2446 0.2445
0.050 0 (0.3213) (0.4244) (0.3213) 0.5068 0.5068 0.5067
1 0.1305 0.1303 0.1302 0.1676 0.1676 0.1675
2 0.0689 0.1409 0.0688 0.4741 0.4737 0.4735
3 0.0775 0.077y4 0.0773 0.1104 0.1102 0.1100
4 0.2038 0.2085 0.2024 0.1985 0.1972 0.1971
5 0.3316 0.3281 0.3279 0.3318 0.3283 0.3281
6 0.4905 0.4832 0.u4827 0.4908 0.4836 0.u4832
0.075 0 (0.3223) (0.4247) (0.3223) 0.5068 0.5068 0.5067
1 0.0933 0.0931 0.0931 0.1706 0.1702 0.1702
2 0.0810 0.1502 0.0808 0.4804 0.4798 0.4796
3 0.1619 0.1609 0.1608 0.1606 0.,1597 0.1595
4 0.3044 0.3028 0.2996 0.29825 0.2884 0.2779
S 0.4961 0.u4847 0.u4839 0.4967 0.4853 0.u4845
6 0.7345 0.7109 0.7091 0.7350 0.7109 0.7091
z Antisymmetric displacements
0.3 \
J../mRo=6
€30.5 n=0
0.2 v=0.25 n=2
L camun o - o= -
2.1 .—.—-—’_'—.—-——-—.—
0 1 1
0 0.01 0.05 ——— 0.3

h/R,

the ratio 4/ R, (——, classical and parabolic shear theories; —.—. — v k= ks =n%12).
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_ I Antisymmetric displacements
W
- -~
.4 L .
v
v— '\
- a— .-
‘.-—
0.3L -\T
L/mRa;G n=0
L/R°=0.0l
0.2 v=0.25 ne?
/ "/
"
0.1p -
v
o a—-
_--—".
0 L 1
0 0.2 0.5 — 1

Fig. 3. Variation of the in-plane torsional (#» = 0) and flexural (» = 2) frequency parameter @ vs
the eccentricity parameter ¢ (——, classical and parabolic shear theories; —- - — Lk, = ks = n*12).

inaccuracy is continuously increasing on increasing the value of the eccentricity parameter.
In this aspect, the theory assuming parabolic variation of thickness shear seems to be
superior and more useful than the theory using thickness shear correction factors.

5. CONCLUSIONS

The equations of motion of two first approximation shell theories, suitable for the
dynamic analysis of homogeneous isotropic non-circular cylindrical shells have been
derived. The first theory is an extension of Timoshenko’s beam and Mindlin’s plate theory
and involves thickness shear correction factors. The second theory assumes a parabolic
variation of thickness shear and does not make use of any shear correction factors.

The equations of both theories have been solved for simply supported non-circular
shells. As an application of the obtained solution, the free vibration problem of an oval
cylindrical shell has been considered. From comparisons made between corresponding
numerical results based on both theories, as well as the classical Love-type theory, it has
been concluded that the theory assuming parabolic variation of thickness shear seems to
be superior and more useful than the theory using thickness shear correction factors.

The estimation of acceptable values for the shear correction factors is the main dis-
advantage of the theory which makes use of them. These factors must account not only for
the variations of shear angles and complex stress state but also for the type of non-circular
shell considered and the divergence of its cross-section from the configuration of the cross-
section of a corresponding circular cylindrical shell.

Furthermore, in the case of a possible extension of the theory to include cross-ply
laminated composite non-circular cylindrical shells, an additional difficulty in the estimation
of the correction factors is that they must also account for the types of materials and the
manner in which they are assembled. On the contrary, in the case of a corresponding
extension of the theory assuming parabolic variation of thickness shear strain, the inner
and outer shell surfaces still remain free of thickness shear stresses.
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APPENDIX A

For the thickness shear deformable analogue of the Love-type theory presented in Section 2.1, the components
of the operational matrix {#] appearing in eqn (12) are given as

L= Q2rDH )y +vi() 50— @150 )

L= =20 )0

3= Ly = 2 (),

Lu=Ly=L =% =Lry=%=0,

02 = QrAY O+ Qg —QrYKf ()~ 20)*5( ) s
Ly =2m(1+k)f()e+2nf"(),

Lys = L5y =2mk,f(),

Ly =20(1+k)f () +2rkf(),

Lyy = 2af)?( )~ QuA) ks ) gy —ka( )+ (2725 )
L= L3 =—~Q2r) k()

Ly =Ly =—2nk )

Luy = —2ayks( )+ Q2rA)? D( ) gyt Dvi( )0~ Q@1)2 DS )

Lus = Ls4 = 2mADvy Ynes

Ly = =)k )+ Q@) v,D( ) gy + DO e~ 21)*DP( ) e

(AD

Here, f is assumed to be expressed as a function of the non-dimensional circumferential coordinate ¢ while a
prime denotes ordinary differentiation with respect to &.

For the sheil theory assuming parabolic variation of the thickness shear (Section 2.2), the components of the
operational matrix [}, which are different from the corresponding components given by eqns (A1), are given

according to

Lry = [+ DN () gy + O el #2047 O).o + B O — 21 5(1 =D (),

Ly = 20 Ole= 20027 ) e = D O+ 2080 O
L= ;(an)bvz SO nes

Z13 = § BIQY O+ O~ @00

L= 20 O =2002DU O e 5 DU O+ 285U O

1
Ly3 = Quf)( )+ (2r)22*D( ) g + 222D( ) pree + (2‘1;)'515( dezens
+ﬁ((2n)z( ).u"‘D[(z’d')z( ).:mn""'( ).{Cn])s

4

Lu=Ly=— ng[(ZnA)’( Yam+ Oer— (27?50 ) s
4 1

&y = -95’53 = gﬁpﬂiz( ).m+ 2—"( )_:“—(21!:)2/3( ).:n];

4
L= 3(21:/1)Dv,[f ( ),n].(’

8 68

La=— E(zn)zvl( )+ 105 DAY () g+ vi( )ee— (2m)25( ) ),
68

Las=Lsy = E(ZNA)D%( dnts

4
L5y = 3 D@ f O+ OLee =225 ().,

8

8
7 _— 2
Lss |5(2n) vi()+ 105

APPENDIX B

DR () g+ ) — (1) 50l

(A2)

In the case of antisymmetric displacements, the submatrices T (j, & = |, 3, 4) appearing in eqns (27) are
N x N square matrices, T, (r, s = 2, 5) are (N + 1) x (N + 1) square matrices and T,, Ts, Thand T (I=1,3,4)
and N x (N+ 1) matrices. For symmetric displacements, T;, (j, kK = 1, 3, 4) are (N+ 1) x (N + 1) square matrices,
T, (r, s =2, 5) are N x N square matrices and Ty, Ts, T, and T (/ = 1, 3, 4) are (N+1) x N matrices. The
dimensions of the submatrices H; (i, j = 3, 4. 5) can analogously be determined. Finally, A, B, C, D and E
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represent proper column matrices which contain the unknown coefficients a,, 4,, c,, d, and e,, respectively, in the
case that the theory proposed in Section 2.1 is used, or the coefficients a,, b,, c,, D, and E,, respectively, in the
case that the theory developed in Section 2.2 is used.
For the thickness shear deformable analogue of the Love-type theory presented in Section 2.1, the components

of the aforementioned Ts and Hs submatrices are given as

T )i = (A2 +vn?)d,,

(T12)in = (T2)in = — Uh1V 20,

(T13)in = (T31)ia = —24,,v8,(n, ),

(T in = (Tadin = (T15)in = (T5)in = (F20)in = (Tudin = 0,

(Ta22) = (v + 120,42k Osln, ).

(T2l = 21 +£ )@ . D= - Ol ),
(T29)in = (Ts2)in = — 2k Os(n. 1),
(T30 = 201 4k )@ (. )+ 2@ i),

(T332 = 285(n, ) + (kA2 +k 2o,

T390 = (Tashn = kshnOps

(T3 = (Ts3)n = —pk by,

(Tadin = [ks+ D2 +vn))3,,

(T = (Ts)in = — DAV 16,

(Tss)n = kot D(v, 224195,

H32)i = (H33)in = 6y

(Has)w = Hi)m = s = (H3)m = Hiz)n = i)y = (Hsu = Hsp)w = 0,

Hidn = Hsg)n = D‘Sm (B1)
where A,, = Amn, 6, is Kronecker’s symbol and y, is 1 or —1 for symmetric or antisymmetric displacements,
respectively.

For the shell theory assuming parabolic variation of the thickness shear (Section 2.2), the components of the
Ts and Hs submatrices, which are different from the corresponding components given by eqns (B1), are given as

(T2 = (v, 416+ 258(n, D]~ 222150 (i, m)~ 51 5 i,
(Tasd = 201 + DR+ nN8 A, )= ~ @l D,

(T2 = = 3 2250,

(T3 = 3 Bty + )05,

(T = 201 + DE+1N@(, )+ = BUZ+ 3098 i)

#:2 1Dne B(n, i)_ D99(n’ i)’
(T33)n = 20(n, D+ DA +n?)? 5»»

4
(T3 = Tas)n =~ :Di,,,(l},+n’)5,‘,,
(TS ‘)m (T5 3)m = U, Sﬁn( +n )6ms
1
(le)in == SDVZ}'MU‘.\”G!(”Y i)+ 'i;el(ia n)]y

(TAQ)M = [ D(AZ +v L )] ni>

105

Tasdin= Tsdin = Dv:"-m"ém-

~H105 105

1
(1- Sl)ln [(; v 1+ nZ)@ 3(" i) #.v l(n’ 0 - -4—7‘—2 @ 7("’ i)]’
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(Tss)n = [ IOSD(}'IVH-’I )jl nis

;2 = 5»-:‘—25@2("’ i,
(H33);p = —2unDO (1, 1),

8
M9 = (Hs)u = 3593(”, i),

1
My = D[“zﬂﬁel(ﬂ, N+ ;04(1', ")],
H35), = [1+ DAL +n2)6,,
4
H)n = His)n = _S'DAm‘sni!
4
M) = Hss)m = 1, gDnam'r
_ _ 68 Bs 5
Hedn = (Hss)y, = Tos “0 (B2)
The quantities @,(n, i) j = L, 2, ..., 10) appearing in eqns (B1) and (B2) are given, in integral form, as
1 sin (2nn&) sin (2iné)
O:(m ) = aJ; 1@ {cos Qnn)cos (2i1t€)} dé,
I .
0,(n,) = aﬁ £ {“.’s (2Znnt) cos (2.’"‘5)} 6,

sin (2an&) sin (2iné)

_ cos (2nn&) cos (2iné)
O =a} /) { sin (2nmf) sin (2ind) } «

(1df {sin @nné) cos (2:1:1:)} d

O,m)=a Jo & \cos (2mm&) sin (2iné)
_ [ sin (2nné) sin (2iné)
&) =a f’(f) {cos (2nné) cos (21’1:5)} dé

_ df {cos 2nré)sin (2iné)
Odmh=a f UFF {sm (2nmé) cos (2;1:5)} de.

i

_ [ d¥ fcos (2nm&) cos (2int)

Odmh=a) d_ez{ sin(2nn) sin (2in¢)} a4
[ ¥ { sin 2nng) sin 2ing)

Os(mi) = o Jo d& {cos (2nné) cos (2in§)} ¢

Oy(n,0) =a

[ 47 feos @nnd)sin (2ind)]
Jo d&3 |sin (2nné) cos (2iné) ¢

dr {cos (2nmg) cos (Ztné)} g, (B3)

O1oln, ) = aj S gs d¢? | sin (2nré) sin 2iné)

where the upper and lower functions appearing in the braces account for antisymmetric and symmetric dis-
placements, respectively.

In any case that f(£) is a complicated function of ¢, the quantities ©,(n,i) (j = 1, 2, . . ., 10) can be evaluated
numerically. In the oval shell case, the simplicity of expression (29) allows analytical evaluation of @,(n, i); they
are given as

Z(2,n,i)
Z\(2,n,0}"

®,(n,i) = ;(l +82/2)()',,,+25{Z](2' o {)}+ %8:{21(4- 0 l)}

1
@,n,i) = —2‘5,,,-+6{

Z(2,n,i) Z,(4.n,0)

N Z(2,n,i)
O(ni) = 56".-+e{zz(2, . 0},

Z(i,n,2)
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On,i)= %(1 +az/2)5..i+2£{22(2’n’ i)}+ ! 62{22(4’ n,i)}’

Z,2.n0f 27 |Z,(4.ni)
0. = —ane i Db o200,
@(n, ) = —16n% {‘;:g iy g}
By, i) = — 16n% {;:g : g}
cinom i)
0utn.0 = ~ras,~ane{ 5.0 M s {2072} (B4)

where the upper and lower functions appearing in the braces account for antisymmetric and symmetric dis-
placements, respectively, and

=0
— %énl
n+i=
——— 1/4
1#0
1
Z(ln,i)= af cos (2In§) cos (2nné) cos (inf) dE =
" n—i =
— - 1/4
otherwise
— 0
I=0,ns%0
— 18,
n+i=]
oo —1/4
1#0
1
Zl,ni)= aJ cos (2Iné) sin 2nnd) sin Rinf)d =
[} In—i =1
— 1/4
otherwise

0 (B5)

An attentive observation of the functions Z, and Z, appearing in expressions (B4) shows that they have a
non-zero contribution only if both n and i are even or odd integers. As a result, even and odd displacements (n
even or odd integer, respectively) are uncoupled and do not affect each other. Another important remark is that
for ¢ = 0 (circular cylindrical shell), the choice of symmetric or antisymmetric displacements does not affect the
final value of the quantities @,(n, #). Thus, for a circular shell, symmetric and antisymmetric displacements give
identical results, provided that n # 0. For n = 0 and antisymmetric displacements the torsional vibration fre-
quencies are obtained. For n = 0 and symmetric displacements the axisymmetric vibration frequencies (breathing
modes) are obtained.



